Kinetic Behaviour of Nanoparticles Across the Biological Physiology
نویسنده
چکیده
Nanotoxicokinetics is a subsection of the toxicology field that involves the study of kinetic displacement of nanoparticles (NPs) in an organism. Four different steps, namely absorption, distribution, metabolism and elimination (ADME), are involved in nanotoxicokinetics. However, only ADE will be covert in this mini review. Because of their size, NPs react differently than particulate matter larger than the nanometre unit in diameter. In the organism, a closer interaction between NPs and biological matrices, called nanotoxicodynamics, might increase the health effects. (Animals are usually in studies to evaluate the global interaction of NPs and biological matrices and to control and reduce the bias.) Understanding the different steps of kinetics is very important to increase the confidence of the amount of NP delivery in the target organ and to assess the level of risk. The objective of this work was to review the behaviour of the NPs interacting with the biological kinetic steps of the ADME and their limitations and constraints. Specifically, it was reviewed the impact of each of the four steps of nanotoxicokinetics, from exposure to elimination in the organism. Recent publications have provided some information on this issue, allowing for a better understanding on how the NPs behave across physiology; however, information is still lacking. We also systematically reviewed the ADME process, and supported our review with examples from the literature. We reviewed the two major factors that influence the absorption of NPs: enumerated biotransformation and elimination limitations. One of the focuses of this study was the interaction between NPs and biological matrices because the morphology and chemical properties may drive the potential for exposure. This paper present different examples of interactions find from literature. To study these interactions, we used a classical pharmacokinetic approach employed in the pharmaceutical industry and compared it to a dynamic predictive tool called the physiologically based pharmacokinetic model. This review would allow us to better interpret the behaviour of NPs. This review would also provide a better insight about the intake, site, and the disposition of NPs and would help identify the major consequences of the interaction of NPs with biological matrices. These interactions might have reversible or irreversible consequences for the integrity of the organism. Nanosafe2010: International Conference on Safe Production and Use of Nanomaterials IOP Publishing Journal of Physics: Conference Series 304 (2011) 012089 doi:10.1088/1742-6596/304/1/012089 Published under licence by IOP Publishing Ltd 1
منابع مشابه
Experimental investigations of behaviour of rhamnolipid biosurfactants as a green stabilizer for the biological synthesis of gold nanoparticles
Use of biosurfactants as a green stabilizer for the biological synthesis of gold nanoparticles (AuNPs) is now emerging as nontoxic and environmentally acceptable "green chemistry" procedures. Stability of AuNPs at different pHs is very important because our body has different pHs. This paper addresses this issue. In this work, first P. aeruginosa PTCC 13401 was used to produce rhamnolipid biosu...
متن کاملThe anti-bacterial effects of magnetic iron oxide nanoparticles produced by biological method and the kinetic study of mortality of common strains in clinical infections
New properties of nano-materials have made nanotechnology the leading part of biology and medical sciences. Due to their various biomedical properties, iron-based magnetic nanoparticles (MNPs) have been highly considered by biological researchers. Nowadays, increasing resistance to antibiotics is a major problem in treating clinical infections. Finding new antibacterial agents is therefore esse...
متن کاملSimple and Rapid Immobilization of Firefly Luciferase on Functionalized Magnetic Nanoparticles; a Try to Improve Kinetic Properties and Stability
We expressed and purified a recombinant P. pyralis luciferase with N-terminal His-tags. The silanized Ni or Cu-loaded magnetic particles were prepared and used to assemble the His-tagged P. pyralis luciferase. This enzyme immobilized on functionalized magnetic nanoparticles (MNPs) via electrostatic interactions of His-tag with Ni2+/Cu2+ ions on the surface of MNPs using si...
متن کاملToxicity Effects of Intraperitoneal Injection of Biochemical Nanosilver on Cardiac Tissue Structure Following Aerobic Training in Male Wistar Rats
Aims Silver nanoparticles are among the most valuable products of nanoscale technology, widely used in various sciences. The present study investigated the effects of biochemical silver nanoparticles on the structure of the heart tissue of non-observatory rats in the course of aerobic training. Methods & Materials In this experimental study, 30 male Wistar rats aged 8 to 12 weeks and weighing ...
متن کاملEffects of cadmium chloride as inhibitor on stability and kinetics of immobilized Lactoperoxidase(LPO) on silica-coated magnetite nanoparticles versus free LPO
Objective(s): Enzyme immobilization via nanoparticles is perfectly compatible against the other chemical or biological approximate to improve enzyme functions and stability. In this study lactoperoxidase was immobilized onto silica-coated magnetite nanoparticles to improve enzyme properties in the presence of cadmium chloride as an inhibitor. Materials and Methods: The process consists of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011